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Stabilization of Networked Control Systems
under Feedback-based Communication

Lei Zhang and D. Hristu-Varsakelis

Abstract— We study the stabilization of a networked control
system (NCS) in which multiple sensors and actuators of a
physical plant share a communication medium to exchange
information with a remote controller. The plant’s sensors and
actuators are allowed only limited access to the controller at
any onetime, in away that is decided on-line using a feedback-
based communication policy. Our NCS model departs from
those in previous formulations in that the controller and
plant handle communication disruptions by “ignoring” (in a
sense that will be made precise) sensors and actuators that
are not actively communicating. We present an algorithm
that provides a complete and straightforward method for
simultaneously determining stabilizing gains and communi-
cation policies and avoids the computational complexity and
limitations associated with some previously proposed models.
We introduce three feedback-based scheduling policies that
quadratically stabilize the closed-loop NCS while achieving
various objectives related to the system’s rate of convergence,
the priorities of different sensors and actuators, and the
avoidance of chattering.

I. INTRODUCTION

components has been studied separately by selecting one
while assuming the other is given.

In [10], the temporal order of the medium access for the
sensors and actuators was described Bgommunication
sequence’” Given a periodic communication sequence, the
problem of designing a constant feedback controller that
stabilizes a linear plant is NP-hard [14], [11]. Under the as-
sumption that the feedback controller has been designed in
advance (for good performance in the absence of communi-
cation constraints), two classes of medium access strategies
have been proposed. These are terstatic access schedul-
ing and dynamic (or feedback-based) access scheduling
Under static scheduling, the order of medium access for the
sensors and actuators is designed off-line and remains fixed
over time. Static scheduling can be implemented via MAC
(Medium Access Control) protocols such as polling, token-
passing, and TDMA. The existence and design of periodic
communication sequences (a subclass of static scheduling
protocols) that stabilize a NCS was studied in [15]. In [13],

A control system is called aetworked control system the schedulablity of NCS under static scheduling is verified
(NCS) if its feedback loop(s) are closed via a sharefly the rate monotonic (RM) rule.

communication medium. In a NCS, the medium’s limited Static scheduling may be less robust when the plant is
capacity must be allocated to all the actuators, sensosbject to unpredictable disturbances, because the controller
and controllers in the system. As a consequence, variousay not be able to respond quickly to a sensor or actuator
communication constraints such as delays [1], [2], [3], datthat requires immediate attention. Moreover, a global timer
rate limitations [4], [5], [6], quantization effects [7], [8], is needed to synchronize all the sensors and actuators.
[9], and medium access constraints [10], [11], [12], [13] allThese restrictions have fueled research on dynamic access
become potential problems whose effects on closed-loggheduling in which the access to the medium is determined
performance and controller design must be understood airdreal-time based on a feedback-based arbitration policy.
dealt with. Examples of dynamic scheduling policies include MEF-

The focus of this paper is the stabilization of NCS undeTOD [12], [16] and CLSe [17]. Dynamic scheduling can
medium access constraints. More precisely, we considbe implemented via random access MAC protocols such as
a NCS in which multiple sensors (outputs) and actuatolSSMA/CR (Carrier Sense, Multiple Access, with Collision
(inputs) of a physical plant are connected to a remote coRResolution).
troller via a shared communication medium. The medium It should be noted that most of the medium access
has limited number of channels so that at any one time onbtrategies proposed in previous works have focused only on
some of the sensors and actuators can exchange informatNdd@8S whose dynamics are “block-diagonal”, in the sense
with the controller, while others must wait. In contrast tathat they consist of collections of sub-systems that are
traditional control systems, the control of NCS involvesuncoupled in the absence of communication constraints, as
choosing not only the controller but also a medium access the case with [17], or are attached to very conservative
strategy. Traditionally, the design of each of these twstability criteria [16]. Furthermore, most previous works

. _ _ _ assume zero order holding (ZOH) at the receiver side of
A ,\‘;‘é?r"EIVX%%8S;§§1"rgendd bgytTRcN)anc?SglRicéermRﬁgingﬂ?\? "\Jlg‘_j%[ communication medium: when an actuator or sensor fails
DAAD19-01-1-0465, (Center for Communicating Networked Control Sys10 access the medium the value stored in a ZOH will be fed
tems, through Boston University). to the plant or controller. In this work, we forgo the use of

The authors are with the Department of Mechanical Engineering ar?OH and letzerobe fed into the plant or controller when an
the Institute for System Research, University of Maryland at College Park: . .

actuator or sensor fails to access the medium. We show that

{l'ei ge, hri stu}@l ue. und. edu i {
t Corresponding author. this protocol leads to a simpler but more powerful model



for NCS which enables one to jointly design a stabilizing Definition 1: An M-to-N communication sequence is a
feedback gain and a dynamic access scheduling poliapapo(t) : R — {0,1}M, satisfying|lo(t)||* = N, Vt.
and to investigate their interactions. The design method

presented in this paper is based on switched system the Any given output, sayz;(t), is available to the con-

r . : . L
[18] and can be used with a more general class of Ncgrglle_r only when its sensor is access!ng the communication
medium, i.e.o;(t) = 1. When sensog cannot access the

which have “fully coupled" dynamics, ommunication mediumof(t) = 0), we assume that a
The remainder of this paper is structured as follows’ ) —n
o value will be used by the controller for that sensor

In Section Il, we describe a switch system-based mod Pr . )
for NCS under static feedback. In Section lll, we presen generate the control signals, while the actual output
' (t) will be ignored due to its being unavailable. Let

an algorithm that allows one to design a static feedbac? 4 denote th out sianal d by th troll i
controller that guarantees the stabilizability of a NCS. Ir‘fl( ) denote the output signal used by the controller a

Section IV, we introduce three feedback-based mediu&{ne t, based on the. above protocol; then, we can write
access scheduling policies that quadratically stabilize a NCG(1) = 7i(t) - i(t); Vi, L. .

while achieving different design objectives related to the We define thamatrix form of a communication sequence
system’s rate of convergence, the priorities of differen?(t) to be

A g
sensors and actuators, and the avoidance of chattering. My (t) = diag(n(t))
Section V contains simulations that illustrate our desigff we let # = [Z1,Za,--- ,%,]T, we see that the signal
approach. available to the controller is not the statebut rather
Il. MODELING NCS —
z(t) = Mo (t) - =(t) )
input channels™ shared communication mEdiuKoutEugchannsl Similarly, whenever actuatoj loses its access to the
t! 1 1 t! communication medium, the actual control signal generated
[ Plant — at the controller for that actuator will be unavailable to
! J_lm'ﬂ", ﬁ.w/' and hence ignored by the plant. Instead, we let the plant
p(t) Zr(jt)—| use azero value for «; until actuatorj regains access.
— Controller | — We represent the medium access status of the plant's
u T

actuators by anm-to-w, communication sequence (see
Fig. 1. A Networked Control System with inputs andn outputs. Definition 1), p(t). Letw = [uy, - - - )" denote the actual
signal generated by the controller and 1gt) denote the

) ] o input signals as viewed from the plant. The two are related
Consider the NCS depicted in Fig. 1 and suppose thgg,

the plant is a controllable LTI systemi | u(t) = M, (t)al(t) 3)
(t) = Ax(t) + Bu(t), »eR%ueR (@) Finally, let the controller in Fig.1 be given by the feed-

wherez = [zy,--- ,7,|T andu = [uy, - ,u,,]T are the back law

states and inputs of the plant. For now we will assume a(t) = K - z(t) (4)

state feedback, meaning that all of the statesz; are )
available for measurement by a corresponding sensor. TRE2M (1)-(4), we see that the closed-loop dynamics of the

communication medium connecting the sensors and th¥CS are
controller hasw, (1 < W < n) channels (called theutput () = (A + BM, (1)K M, (t))z(t) (5)
channel}. At any one time, onlyw, of the n sensors can

access these channels to communicate with the controllEhe above discussion is summarized in the block diagram
while others have to wait. At the input side, each of thef Fig. 2.

plant’s inputs is connected to an actuator. Theactuators
sharew, (1 < w, < m) input channelsto communicate M, (1) |L—| & — Az 1 Bu |m——| Mo (1)
with the controller, onlyw, of the m actuators can access w z

the input channels at any one time.

K

A. The effect of medium access constraints Fig. 2. The closed-loop dynamics of a NCS

Fori = 1,--- ,n, let the binary-valued functiom; ()
denote the medium access status of seasgrtimet, i.e.
oi(t) : R — {0,1}, wherel means “accessing” and 1
means “not accessing”. The medium access status of th
n Sensors over time can be represented by"theto-w,”
communication sequencg[11], [17])

Remark 1:As we have mentioned, previous works (e.g.
0], [11]), have often assumed that there is a zero-order-
5ld (ZOH) at the receiving side of a communication
medium. The use of ZOH significantly increases the sys-
tem’s complexity because it introduces time-varying de-
o) =[o1(t), - ,0n.t)]T lays to the closed-loop dynamics (see, for example, the



“extensive form” in [11] and other similar constructions). [1l. STABLE CONVEX COMBINATIONS
Moreoyer, hplding (_:Ielayed input/output fqr the en_tire ac- As demonstrated in [19], the switched system (6) is
cess disruption period may not necessarily benefit systegppilizable under a feedback-based switching wulg if

performance. In this work, we have chosen to “ignore” thenere exist positive real numbets;, i = 1,--- ,m, j =

inputs or outputs that are not actively communicating. W ..., satisfying

have shown that the effect of medium access constraints o

is equivalent to cascading the original plant with a pair o

of communication sequences (in their matrix form). The ;2%’ =1 ®

resulting closed loop dynamics (5) have lower complexity -7 o ,

than previous models and lead to a straightforward amgt'Ch that the convex combination &f;'s

complete solution to the stabilization problem, as we will m n

show next. AEDN " aiA; )
i=1 j=1

B. An equivalent switched system is stable. If A is stable, it is well known that there exist

Without loss of generality, we begin with the casepositive definite matrice®, @ such thatd” P+PA = —Q.
w, = w, = 1. Now p(t) is an m-to-1 communication Then for allz(t) # 0
sequence and(t) is ann-to-1 communication sequence. TVATP + P N = 2Tt N <0
By definition, p(t) can only havemn possible values and z (A P+ PA=() @ (HQ=(1)
o(t) can only haven possible values. Hence the closedAn important fact in the proof of the stable convex combi-
loop NCS (5) is essentially a switched system with »  nation result is that the last equation can be rewritten as
possible dynamics. o7 T - 7

For simplicity, it will be helpful to introduce one ad- Za”m () (A P+ PAjz(t) = —2* (1)Qu(t) <0
ditional piece of notation. Lety(t) be a p-to-1 com-  *’

munication sequence. By definitiom(t) takes on val- for all () # 0. Becausex;; > 0 it follows that for all

ues on the set of standanetdimensional basis vectors, (t) # 0 there always exist indice§x) € {1,---m} and

0,1,0---0]7, .-+ e? = O~--0,1T.Wedefinethsgalar T T

1[orm of th(]e communiczgtion se(luenqét) to be the map 2 ) Aiwyi@ P+ PAiw)j)2(t) <0

7(t) : R — {1,---p}, such thatn(t) = ¢}, vt In Hence if the switched system is switched according to

other words,ij(t) equalsi if n(t) = e} s(t) = [i(x(t)),j(x(t))] the Lyapunov functionV (t) =
Now let the scalar forms op and o be p(t) anda(t), @ (t)Px(t) will always be decreasing.

E, = {6117, 612,, ce. ’eg}, where 611) = [1,0--- O]T7 e2 = j(x) e {l,---n} such that
p
and lets(t) = [p(t), a(t)]. Then, the closed loop system (5) Here the stabilizability of the switched system (6) re-

is equivalent to the following switched system lies on the existence of a stable convex combination (9).
However, if theA;;’s are given and the number of possible
T =AmnT (6) dynamics (in our casen-n) is greater than two, identifying

such a stable convex combination (if one exists) is NP-
hard [20]. Fortunately, in a NCS we also have the freedom
to design the controller in order to obtain a stable convex

wheres(t) defines a switching rulg,(t) : R — {1,---m} x
{1,---n}. The matrix A, takes values on the set

{Ajj i i=1, mij=1-n} combination (9).
’ From (7), we see thatl can be expressed as
whereA;; denotes the closed-loop dynamics when actuator N
i and sensoyj are accessing the communication medium, A= ZO‘”A’U =A+BK (10)
i.e. p=e! ando = e). From (5) it easy to see that e
where

Aij =4+ BKij (7) aq1kry apgkis - a1nkin

where K;; = diag(et,) - K - diag(el)). K= B (11)
We note that although we have assumed= w, = 1,

all of the discussion in this paper applies to any number of Am1km1  Qmokmz o Qi kn

channels. For example, when the communication mediuaihdk;; is the(i, j) entry of K. Now a feedback gaik that
hasw, (1 < w, < m) input channels ana, (1 < w, < guarantees a stable convex combination (9) can be found by
m) output channels, thep(t) ando (¢) will have (') and  the following

() possible values, respectively. The closed Iopop systemlgorithm:

will then switch betweer([v’”;) - (,.) possible dynamics. 1) Choosem - n positive numbersy;;’s such that (8) is
The required modifications are straightforward and will not satisfied.

be given here. 2) Choose a set of desired (stable) eigenvalues4for



3) Solve the pole-placement problem f&i, such that Weighted Fastest Decay (WFD):
A = A+ BK has the desired eigenvalues, providedror all ¢, let s(¢) be determined by
that (A, B) is controllable. _ .7 T N
4) Solve forK = [k;ij]mxn from (11). s(t) = arg T Qi (BAGP + PAjl=(t) (16)
Notice that for the same choice g, different choices of
a;;'s results in different values of the feedback gdin A Under the WFD rule, the switching signalt) is de-
largera;; leads to a smallek;;. This fact gives us gddlthnal termined not only by the potential values Bf associated
freedom in the design ofC. By properly choosingvi;'s  with the m - n possible dynamics, but also by the values
we can make the controllgs’ meet certain optimization or of a;;'s. From (16), we see that eaeh; acts as a weight
design criterion, for examplenax; ; [kij| < k., wherek,,  associated with the dynamics;;. A greatera; will result
is the highest gain a controller may provide. Moreover, ify, g greater chance that (6) is switched4g. Note thatA,
a;; determines the “priority” (or “weight”) of the dynamics the communication medium. Hence the choice of's
Aij. actually assigns “priorities” for every input and output of
the NCS.
Theorem 2:If A is stable, for anyP > 0, system (6)

] ) ) _is quadratically stable under the switching rule WFD, with
In this section, we introduce three feedback based switcfe quadratic decay rate> ¢*.

ing rules that guarantee the quadratic stability of (6). Proof: SinceA is stable, there exists a positive definite
Definition 2: [20] The system (6) is said to be quadrat-matrix  such thatd” P + P.A = —Q. Then for allz # 0
ically stable if there exists a positive definite quadratic

function V(z) = z?Pz, a positive numbere and a - a2l (O[ALP + PAx(t) = —2T (H)Qx(t
switching rule s(t) such that4V(z) < —exx for all 22 i (DL ale(?) (0)Q=(t)

IV. MEDIUM ACCESS POLICIES THAT
GUARANTEE QUADRATIC STABILITY

1=1 j=1
trajectoriesz of the system (6). ! a7)
We call the numbet in the above definition thquadratic  (16) and (17) imply, for alt,
decay rateof the switched system. T (t)Qx(t)
Notice that the Lyapunov functiol = z”Pzx is s’ (A P+ PAsnla(t) < - m-n

continuous and piecewise differentiable along trajectorig§ance
of (6). Then between any two consecutive switches ]

d . V(t) = &7 (t) (A P + PAyr)z(t)

—V =a" (t)(AypnP + PAgp)x(t) (12) T .

dt (®) () < 733 (t)Q:B(t) < _ Amln(Q) .’BT(t)CC(t)

As suggested in [19], the switching rule that ensures max- Mo Q) N Qmag

imum instantaneous decay bf is the following u

Fastest Decay (FD): For all ¢, let s() be determined by ~ Now the proof of Theorem 1 is straightforward because
- .7 T N under FD, the instantaneous valuelofs, by definition, less

s(t) = arg T (O)[A P + PA;j (1) (13) than or equal to that when (6) is under any other switching

rules, including WFD. Hence, at any time, the decay rate

) _ _ _ of (6) under FD must be greater than that when (6) evolves
The idea of the FD rule is: at any time switch system |, 4o \WED.

(6) to the set of dynamics that gives the fastest decay

. of Although Theorems 1 and 2 provide switching rules
V(t). Now define

that guarantee quadratic stability the switching rate is not
Amin(Q) bounded under the FD or WFD rule. High-speed switching
(14 s often impractical and may lead to chattering. One way to
bound the switching rate is to introduce a minimawell
time [18] 7 > 0 and restrict the interval between any two
ATP+PA=-Q (15) consecutive switches to be no smaller thaiThe switching
. rule we introduce next guarantees a dwell time between
Amin(Q) denotes the smallest eigenvaluesfandoma: = switchings. The idea is to let the system evolve with one
max; ; oi;. \We thus have the following: set of dynamics until the decay rate bf is less than a
Theorem 1:1f A is stable, for anyP > 0, system (6) is certain threshold.
quadrat?cally stable under the switching rule FD, with theGuaranteed Dwell-time (GD):
guadratic decay rate> ¢*.

* A
cE = —
m:-n - Omag

where@ is such that

Let ¢g be a number satisfying < ¢y < €*
To prove Theorem 1, we must first introduce the “weighted- 1) Denote the current switch time by, chooses(t)
FD (WFD)” switching rule according to (13)



2) Lets(t) = s(to) for all t € [to,t1), wheret; is the
next switch time determined by

K via a shared communication medium which has only
one input channel and one output channel. The closed-loop
NCS is equivalent to a switched system switching between

b= eight possible linear dynamics = A;;x, (0 = 1,2, j =
tigtfu a” (1) (ALo) P+ PAsy))2(t) > —eo” (H)(t)  1,2,3,4). We first choose they;,’s to be
3) Repeat from step 1 fan ] = af = 1/6 1/6 1/6 1/6
=% T 112 112 1/12 1/12

Theorem 3:If A is stable, for anyP > 0, system (6) is
quadratically stable under the switching rule GD with thénd the desired eigenvalues &f (9) to be [-5, -6, —4
decay rates > ¢,. Moreover there exists a number> 0, ,—3]. We solve the pole-placement problem (10) for
such that the dwell time between any consecutive switch@®d then solve fork' from (11). The feedback gairk
is no greater than. corresponds tex' is

Proof: The quadratic stability of (9) is obvious because 0.5463
according to GD,V < —egx (t)x(t) for all t. We only K =K' = [ 23' 0186
need to prove boundedness of the dwell time. tetind '
t1 (to < t1) be any two consecutive switching times. FolWe choose) = I and solve forP from (15). Figure 3(a)
t € [to,t1), define is the evolution of the state under the FD rule and(".

T T According to (14), the quadratic decay rate is at least
o(t) = ¥ (t)(AS(“])P + PAs))J2(?) 3/4. Figure 3(b) is the evolution of the state under the

x” (t)@(t) GD switching rule and<f. The minimum decay rate was
¢(-) is continuous and differentiable ifo,¢,). Let chosen aso =0.1.

—3.1950
4.3389

—0.8567

—2.2001
10.4101

—2.6616

AsT(t0>P + PAy1y) = —Qs(10), then for allt € [to, 1) (a)
20
o) = T Rat® 2@~ 2TQu 2 2 ST 0 0 ol

(xTx)?

WhereRs(tO) = AsT(tO)QS(to) + QS(tO)AS(tU) and Ss(to) =
Aﬁto) + As(to)- Now let Yo = max;; 7'(Qij), YR =
max; ; r(A5Qij + QijAij), and ys = max;;r(Aj; +
Aij), where@;; = f(AZ;P + PA;;), and for a square
matrix B, r(B) is its spectral radius, defined agB) =
max;(|A;(B)]). Now from (18), it is easy to verify that for
all t € [to,t1), |o(t)] < vr + Yo - vs. Hence|o(t]) —
o(to)] < (v + v - vs)(t1 — to), Wheret; denotes the

X(@)

X()

20

10

-10
0

FD

x3(t
o X 4(l)

Y
o

0.2

0.6

0.8

— %0

X,
o X 4(t)

R

0.2 0.4

t(s)

0.6

0.8

instant right before the switch taking place tat Notice
that ¢(ty) > €* because at the beginning of each switch,
s(t) is determined by (13). Als@(t; ) = € according to
the GD policy . Hencdo(t; ) — ¢(to)| > €* — €, and

Fig. 3. Trajectories ofc under the FD and GD rulel{ = KT)

Next we show how then;;'s act as medium access

- € — € 19 priorities under the WFD rule. Notice that the first row
bo=to 2 YR+ 70 - s 19 s [o;;] corresponds to the priority af;, the second row
- corresponds to the priority ofi;. Hence the inputu is

given higher priority thanu, in of. Now we choose a

V. SIMULATIONS different set ofa;;’s,

Let the plant be the unstable batch reactor ([21], p.62) o] = o = { 1/12 1/12 1/12 1/12 ]
1.38  —0.2077 6.715 —5.676 " /6 1/6 1/6 1/6
. —{).58714 :;729 0 A 0.675 T whereus is given higher priority. For the same choice of
00 273 —6.654 5893 A, the feedback gaitk corresponding tax* is
0.048 4.273 1.343 —2.104
0 0 K— Kt — 1.0927 —6.3900 —1.7135 —4.4002
5.67 0 o T | 11.5093  2.1694 5.2050 —1.3308]
T 1136 3146 | ¥
1.136 - 0 Note that the first row of* (corresponding to the input

u1) is a half of the first row ofKT, while the second row
which has two inputs and four outputs (its states). The bataf K* (corresponding tau,) is twice of the second row
reactor is being controlled by a static feedback controllesf K. This tells us that if an input gets higher medium



access priority, less control effort will be needed for thaimay be used to reconstruct the state at either the plant or
input (This also holds for the FD and GD rule). the controller side of the communication medium. We are
We implement the WFD rule in the NCS for the twoexploring the construction of such observers under periodic

sets of priorities,a’ and af, with their corresponding and feedback-based communication.

feedback gains. Our simulation results show that the NCS
is stable under either of the two sets. However, the input
communication sequences that stabilize the NCS are ver&}]
different. As shown in Fig. 4, whem; is given higher
priority (Fig. 4(a)), most of the medium access time is given(?]
to the inputuy; whenus is given higher priority (Fig. 4(b)),

most of the medium access time is given to the input [3]
(@
‘ ‘ ‘ ‘ [4]
2 ; |
1 S I R W O (5]
0 O.‘2 014 016 018 1
(b)
[6]
2 |
S ll ”' “ | \ [7]
1t ,
0 O.‘2 014 016 018 1 [8]
t(s)
Fig. 4. The input communication sequeng€&) under the WFD rule.  [9]
(a): usinga’ and K't; (b): usingat and K
[10]

The above result shows that, for each input, highe[El]
priority means longer medium access time.

VI. CONCLUSIONS ANDFUTURE WORK [

We have discussed the problem of jointly designing fis
feedback controller and medium access strategy for stabiliz-
ing a linear network-controlled system (NCS). In our NCS
model, actuators or sensors that are not actively accessi[qg]
the communication medium are effectively “ignored” by
the plant and controller. In that setting, the complexity of
the stabilization problem becomes quite manageable.
presented an algorithm for designing stabilizing feedback
gains by solving a standard pole-placement problem. Usiriif]
these gains, one can then choose from three feedback-based
medium access scheduling policies (FD, WFD, and GD}7]
to stabilize the system. The FD policy guarantees fastest
decay of a quadratic Lyapunov function; the WFD policy[18
allows one to affect the attention given to different inputs
and outputs; the GD policy guarantees a minimum dwell
time between any two consecutive switchings, to avoi
chattering.

Here, we have assumed that state feedback was avd#Ql
able. A straightforward extension is to address the output
feedback case, where the plant outputyig) = Cz(t), [21]
with C' a p-by-n matrix (p < n). In this case, an observer
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